

POWER MANAGEMENT

General Description

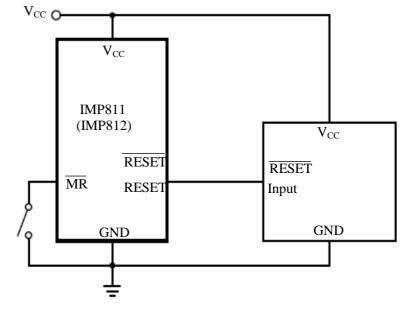
The IMP811/IMP812 are low-power supervisors designed to monitor voltage levels of 2.5V,3.0V, 3.3V and 5.0V power supplies in low-power microprocessor (μ P), microcontroller (μ C) and digital systems. Each fea-tures a debounced manual reset input. The IMP811/812 are improved drop-in replacements for the Maxim MAX811/812 with extended temperature specifications to 125°C.

A reset signal is issued if the power supply voltage drops below a preset threshold and is asserted for at least 140ms after the supply has risen above the reset threshold. The IMP811 has an active-low output RESET that is guaranteed to be in the correct state for VCC down to 1.1V. The IMP812 has an active-high output RESET. The reset comparator is designed to ignore fast transients on VCC.

Low power consumption makes the IMP811/IMP812 ideal for use in portable and battery-operated equipment. Available in a compact 4-pin SOT143 package, the devices use minimal board space.

Three voltage thresholds are available to support 2.5V to 5V systems:

Key Features

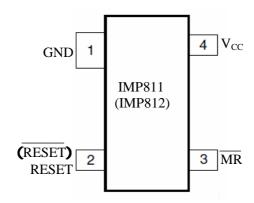

- Improved Maxim MAX811/MAX812 replacement
- —Specified to 125°C
- 6μA supply current
- Monitor 5V,3.3V,3V and 2.5V supplies
- Manual reset input
- 140ms min. reset pulse width
- Guaranteed over temperature
- Active-LOW reset valid with 1.1V supply (IMP811)
- Small 4-pin SOT-143 package
- No external components
- Power-supply transient-immune design

Applications

- Computers and controllers
- Embedded controllers
- Battery operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and handheld equipment

Reset Threshold				
Suffix	Voltage (V)			
L	4.63			
M	4.38			
J	4.00			
T	3.08			
S	2.93			
R	2.63			
7	2 32			

Block Diagram



POWER MANAGEMENT

Pin Assignments

SOT143

Ordering Information

Part Number ¹	Reset Threshold (V)	Temperature Range	Pin-Package	Package Marking ² (XXX Lot Code)
IMP811 Active LOW Rese	t			
IMP811LEUS/T	4.63	-40°C to $+125$ °C	4-SOT143	AMXXX
IMP811MEUS/T	4.38	−40°C to +125°C	4-SOT143	ANXXX
IMP811JEUS/T	4.00	−40°C to +125°C	4-SOT143	AOXXX
IMP811TEUS/T	3.08	−40°C to +125°C	4-SOT143	APXXX
IMP811SEUS/T	2.93	−40°C to +125°C	4-SOT143	AQXXX
IMP811REUS/T	2.63	−40°C to +125°C	4-SOT143	ARXXX
IMP811ZEUS/T	2.32	−40°C to +125°C	4-SOT143	ZCXXX
IMP812 Active HIGH Res	et			
IMP812LEUS/T	4.63	−40°C to +125°C	4-SOT143	ASXXX
IMP812MEUS/T	4.38	−40°C to +125°C	4-SOT143	ATXXX
IMP812JEUS/T	4.00	−40°C to +125°C	4-SOT143	AUXXX
IMP812TEUS/T	3.08	−40°C to +125°C	4-SOT143	AVXXX
IMP812SEUS/T	2.93	−40°C to +125°C	4-SOT143	AWXXX
IMP812REUS/T	2.63	−40°C to +125°C	4-SOT143	AXXXX
IMP812ZEUS/T	2.32	−40°C to +125°C	4-SOT143	ZDXXX

Notes: 1. Tape and Reel packaging is indicated by the /T designation.

Absolute Maximum Ratings

Pin Terminal Voltage with Respect to Ground

$V_{CC} \dots -0.3V$ to $6.0V$	Operating Temperature Range40°C to 125°C
RESET, \overline{RESET} and \overline{MR} –0.3V to $(V_{CC}+0.3V)$	Storage Temperature Range65°C to 160°C
Input Current at V_{CC} and $\overline{MR}\dots\dots\dots20mA$	Lead Temperature (soldering, 10 sec) 300°C
Output Current: RESET or RESET 20mA	
Rate of Rise at V_{CC}	
Power Dissipation (T _A = 70°C) 320mW	

(Derate SOT-143 4mW/°C above 70°C)

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

^{2.} Devices may also be marked with full part number: 811L, 812M etc. XXX refers to lot.

POWER MANAGEMENT

Electrical Characteristic

Unless otherwise noted V_{CC} is over the full voltage range, $T_A = -40$ °C to 125°C.

Typical values at $T_A = 25$ °C, $V_{CC} = 5V$ for L/M/J devices, $V_{CC} = 3.3V$ for T/S devices and $V_{CC} = 3V$ for R devices, $V_{CC} = 2.5V$ for Z devices

Parameter	Symbol	Conditions		Min	Тур	Ma	Units
Input Voltage (VCC) Range	V _{CC}	$T_A = 0$ °C to 70°C $T_A = -40$ °C to 125°C		1.1 1.2		5.5 5.5	V
Supply Current	I_{CC}	$T_{A} = -40$ °C to 85°C $T_{A} = -40$ °C to 85°C $T_{A} = 85$ °C to 125°C $T_{A} = 85$ °C to 125°C	$\begin{array}{l} V_{CC} < 5.5 V, L/M/J \\ V_{CC} < 3.6 V, R/S/T/Z \\ V_{CC} < 5.5 V, L/M/J \\ V_{CC} < 3.6 V, R/S/T/Z \end{array}$		6 5	15 10 25 20	μΑ
		L devices	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$ to 85°C $T_{A} = -40^{\circ}C$ to 125°C	4.54 4.50 4.40	4.63	4.72 4.75 4.86	
		M devices	$T_{A} = 25^{\circ}\text{C}$ $T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$ $T_{A} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	4.30 4.25 4.16	4.38	4.46 4.50 4.56	
		J devices	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$ to 85°C $T_{A} = -40^{\circ}C$ to 125°C	3.92 3.89 3.80	4.00	4.07 4.10 4.20	
Reset Threshold	V_{TH}	T devices	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$ to 85°C $T_{A} = -40^{\circ}C$ to 125°C	3.03 3.00 2.92	3.08	3.14 3.15 3.23	V
		S devices	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$	2.88 2.85 2.78	2.93	2.98 3.00 3.08	
		R devices	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$ to 85°C $T_{A} = -40^{\circ}C$ to 125°C	2.58 2.55 2.50	2.63	2.68 3.70 2.76	
		Z devices	$T_A = 25$ °C $T_A = -40$ °C to 85°C $T_A = -40$ °C to 125°C	2.27 2.24 2.22	2.32	2.37 2.39 2.42	
Reset Threshold Temp. Coefficient	TC_{VTH}				30		ppm/°C
VCC to Reset Delay		$V_{CC} = V_{TH}$ to $(V_{TH} - 125\text{mV})$, L/M/J devices $V_{CC} = V_{TH}$ to $(V_{TH} - 125\text{mV})$, R/S/T/Z devices			40 20		μs
Reset Active Timeout Period		$T_A = -40$ °C to 85°C $T_A = 85$ °C to 125°C	$T_A = -40$ °C to 85°C		240	560 840	ms
MR Minimum Pulse Width	t_{MR}			10			us
MR Glitch Immunity		Note 3			100		ns
MR to RESET Propagation Delay	t_{MD}	Note 2			0.5		us
	V_{IH}	Voc Verrature IMP811/	8121 /M/I	2.3			
MR Input Threshold	$V_{\rm IL}$	$V_{CC} > V_{TH(MAX)}$,IMP811/812L/M/J				0.8	V
The input I inconoid	$V_{ m IH}$		/812R/S/T/7	$0.7V_{CC}$,
	$V_{\rm IL}$	$V_{CC} > V_{TH(MAX)}$,IMP811/812R/S/T/Z				$0.25V_{CC}$	
MR Pull-up Resistance				10	20	30	ΚΩ

POWER MANAGEMENT

Electrical Characteristic

Unless otherwise noted V_{CC} is over the full voltage range, $T_A = -40^{\circ}C$ to 125°C. Typical values at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ for L/M/J devices, $V_{CC} = 3.3V$ for T/S devices and $V_{CC} = 3V$ for R devices, $V_{CC} = 2.5V$ for Z devices

		$V_{CC} = V_{TH}$ min., $I_{SINK} = 1.2$ mA, IMP811R/S/T/Z		0.3	·
Low RESET Output Voltage (IMP811)	V_{OL}	$V_{CC} = V_{TH}$ min., $I_{SINK} = 3.2$ mA, IMP811L/M/J		0.4	V
		$V_{CC} > 1.1 \text{V}, I_{SINK} = 50 \mu \text{A}$		0.3	
High RESET Output Voltage (IMP811)	V_{OH}	$V_{CC} > V_{TH}$ max., $I_{SOURCE} = 500\mu A$, IMP811R/S/T/Z	$0.8V_{CC}$		V
Tilgii KESET Output voltage (IWI 811)	V OH	$V_{CC} > V_{TH}$ max., $I_{SOURCE} = 800\mu A$, IMP811L/M/J	V _{CC} -1.5		v
I DESET O (VI) (IMB010)	7.7	$V_{CC} = V_{TH}$ max., $I_{SINK} = 1.2$ mA, IMP812R/S/T/Z		0.3	V
Low RESET Output Voltage (IMP812)	V_{OL}	$V_{CC} = V_{TH}$ max., $I_{SINK} = 3.2$ mA, IMP812L/M/J		0.4	V
High RESET Output Voltage (IMP812)	V _{OH}	$1.8V < V_{CC} < V_{TH}$ min., $I_{SOURCE} = 150\mu A$	$0.8V_{CC}$		V

Notes: 1. Production testing done at $TA = 25^{\circ}C$. Over temperature specifications guaranteed by design only using six sigma design limits.

- 2. RESET output is active LOW for the IMP811 and RESET output is active HIGH for the IMP812.
- 3. Glitches of 100ns or less typically will not generate a reset pulse.

Pin Descriptions

Pin Number	Name	Function
1	GND	Ground
2 (IMP811)	RESET	\overline{RESET} is asserted LOW if V_{CC} falls below the reset threshold and remains LOW for the 240ms typical reset timeout period (140ms minimum) after V_{CC} exceeds the threshold.
2 (IMP812)	RESET	RESET is asserted HIGH if $V_{\rm CC}$ falls below the reset threshold and remains HIGH for the 240ms typical reset timeout period (140ms minimum) after $V_{\rm CC}$ exceeds the threshold.
3	$\overline{ m MR}$	Manual Reset Input. A logic LOW on \overline{MR} asserts RESET. RESET remains active as long as \overline{MR} is LOW and for 180ms after \overline{MR} returns HIGH. The active low input has an internal $20k\Omega$ pull-up resistor. The input should be left open if not used. It can be driven by TTL or CMOS logic or shorted to ground by a switch
4	V_{CC}	Power supply input voltage (2.5V,3.0V,3.3V,5V)

Related Products

	IMP809	IMP810	IMP811	IMP812
Max. Supply Current	15μΑ	15μΑ	15μΑ	15μΑ
Package Pins	3	3	4	4
Manual RESET input				
Package Type	SOT-23	SOT-23	SOT-143	SOT-143
Active-HIGH RESET output		•		
Active-LOW RESET output				

POWER MANAGEMENT

Typical Performance Characteristics

Reset Timing and Manual Reset (MR)

The reset signal is asserted—LOW for the IMP811 and HIGH for the IMP812 – when the VCC signal falls below the threshold trip voltage and remains asserted for 140ms minimum after the VCC has risen above the threshold.

Alogic low on \overline{MR} asserts RESET LOW on the IMP811 and HIGH on the IMP812. \overline{MR} is internally pulled high through a $20k\Omega$ resistor and can be driven by TTL/CMOS gates or with open collector/drain outputs. \overline{MR} can be left open if not used.

 $\overline{\text{MR}}$ may be connected to a normally-open switch connected to ground without an external debounce circuit. For added noise rejection, a $0.1\mu\text{F}$ capacitor from $\overline{\text{MR}}$ to Ground can be added.

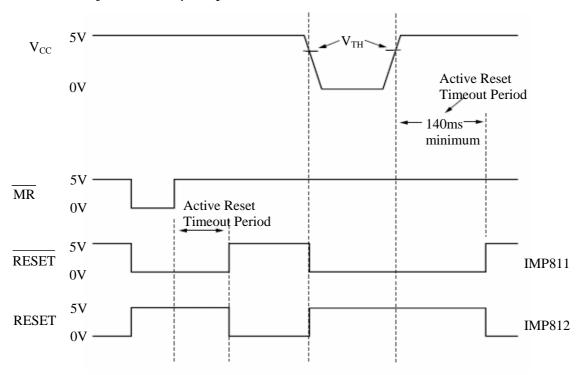


Figure 1. Reset Timing Diagram

RESET Output Operation

In $\mu P/\mu C$ systems it is important to have the processor begin operation from a known state or be able to return the system to a known state. A RESET output to a processor is provided to prevent improper operation during power supply sequencing or low voltage – brownout – conditions.

The IMP811/812 are designed to monitor the system power supply voltages and issue a RESET signal when levels are out of range. RESET outputs are guaranteed to be active for VCC above 1.1V. When VCC exceeds the reset threshold, an internal timer keeps RESET active for the reset timeout period, after which RESET becomes inactive (HIGH for the IMP811 and LOW for the IMP812).

POWER MANAGEMENT

Typical Performance Characteristics

Valid Reset with Vcc under 1.1V

To ensure that logic inputs connected to the IMP811 \overline{RESET} pin are in a known state when VCC is under 1.1V, a $100k\Omega$ pull-down resistor at \overline{RESET} is needed. The value is not critical.

A similar pull-up resistor to VCC is needed with the IMP812.

If VCC drops below the reset threshold, RESET automatically becomes active. Alternatively, external circuitry or a human operator can initiate this condition using the Manual Reset (\overline{MR}) pin. There is an internal pullup on \overline{MR} so it can be left open if it is not used. \overline{MR} can be driven by TTL/CMOS logic or even an external switch, since it is already debounced. If the switch is at the end of a long cable, it might require a bypass (100nF) at the pin if noise pickup is a problem.

Eight voltage thresholds are available to support 2.5V and 5V systems:

Reset Threshold				
Suffix	Voltage (V)			
L	4.63			
M	4.38			
J	4.00			
T	3.08			
S	2.93			
R	2.63			
Z	2.32			

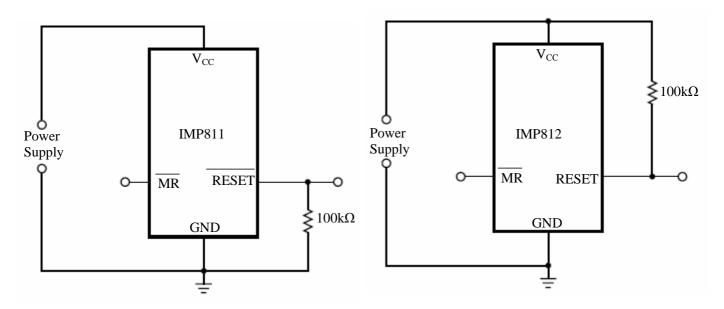


Figure 2. RESET Valid with VCC Under 1.1V

Figure 3. RESET Valid with V_{CC} Under 1.1V

POWER MANAGEMENT

Typical Performance Characteristics

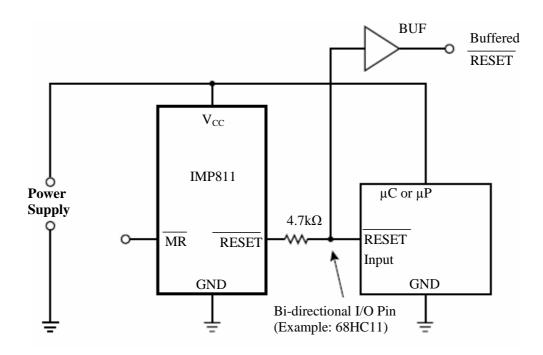
(Continued)

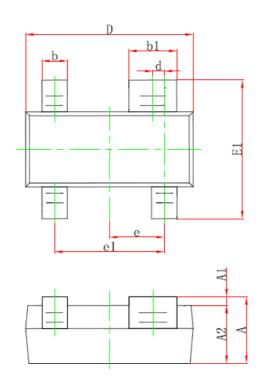
Negative Vcc Transients

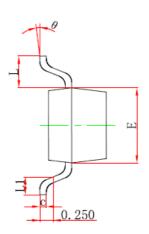
Typically short duration transients of 100mV amplitude and 20μs duration do not cause a false RESET. A 0.1μF capacitor at VCC increases transient immunity.

Bi-directional Reset Pin Interfacing

The IMP811/812 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the IMP809/810 reset output and the $\mu P/\mu C$ bi-directional reset pin.




Figure 4. Bi-directional Reset Pin Interfacing



POWER MANAGEMENT

Mechanical Dimensions

Plastic SOT-143 (4-Pin)

Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
A	0.035	0.045	0.900	1.150	
A1	0.000	0.004	0.000	0.100	
A2	0.035	0.041	0.900	1.050	
b	0.012	0.020	0.300	0.500	
c	0.003	0.006	0.080	0.150	
D	0.110	0.118	2.800	3.000	
d	0.008 TYP.		0.200 YYP		
Е	0.047	0.055	1.200	1.400	
E1	0.089	0.100	2.250	2.550	
e		0.037 TYP	0.	.950 TYP	
e1	0.071	0.079	1.800	2.000	
L	0.022 REF		0.	.550 REF	
L1	0.012	0.020	0.300	0.500	
θ	0°	8°	0°	8°	

POWER MANAGEMENT

ISO 9001 Registered

Daily Silver IMP Microelectronics Co.,Ltd

7 keda Road ,Hi-Tech Park,

NingBo,Zhejiang,P.R.C

Post Code:315040

Daily Silver IMP

Tel:(086)-574-87906358

Fax:(086)-574-87908866

Email:sales@ds-imp.com.cn

http://www.ds-imp.com.cn

The IMP logo is a registered trademark of Daily Silver IMP. All other company and product names are trademarks of their respective owners @2015 Daily Silver IMP

Printed in china

Revision: F

Issue Date: 28th.Aug.15 Type: Product

www.ds-imp.com.cn